165 research outputs found

    Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers

    Full text link
    Building on recent progress at the intersection of combinatorial optimization and deep learning, we propose an end-to-end trainable architecture for deep graph matching that contains unmodified combinatorial solvers. Using the presence of heavily optimized combinatorial solvers together with some improvements in architecture design, we advance state-of-the-art on deep graph matching benchmarks for keypoint correspondence. In addition, we highlight the conceptual advantages of incorporating solvers into deep learning architectures, such as the possibility of post-processing with a strong multi-graph matching solver or the indifference to changes in the training setting. Finally, we propose two new challenging experimental setups. The code is available at https://github.com/martius-lab/blackbox-deep-graph-matchingComment: ECCV 2020 conference pape

    The multi-stripe travelling salesman problem

    Get PDF
    In the classical Travelling Salesman Problem (TSP), the objective function sums the costs for travelling from one city to the next city along the tour. In the q-stripe TSP with q ≥ 1, the objective function sums the costs for travelling from one city to each of the next q cities along the tour. The resulting q-stripe TSP generalizes the TSP and forms a special case of the quadratic assignment problem. We analyze the computational complexity of the q-stripe TSP for various classes of specially structured distance matrices. We derive NP-hardness results as well as polyomially solvable cases. One of our main results generalizes a well-known theorem of Kalmanson from the classical TSP to the q-stripe TSP

    Perturbation strength and the global structure of qap fitness landscapes

    Get PDF
    We study the effect of increasing the perturbation strength on the global structure of QAP fitness landscapes induced by Iterated Local Search (ILS). The global structure is captured with Local Optima Networks. Our analysis concentrates on the number, characteristics and distribution of funnels in the landscape, and how they change with increasing perturbation strengths. Well-known QAP instance types are considered. Our results confirm the multi-funnel structure of QAP fitness landscapes and clearly explain, visually and quantitatively, why ILS with large perturbation strengths produces better results. Moreover, we found striking differences between randomly generated and real-world instances, which warns about using synthetic benchmarks for (manual or automatic) algorithm design and tuning

    Incorporating risk in field services operational planning process

    Get PDF
    © Springer Nature Switzerland AG 2018. This paper presents a model for the risk minimisation objective in the Stochastic Vehicle Routing Problem (SVRP). In the studied variant of SVRP, service times and travel times are subject to stochastic events, and a time window is constraining the start time for service task. Required skill levels and task priorities increase the complexity of this problem. Most previous research uses a chance-constrained approach to the problem and their objectives are related to traditional routing costs whilst a different approach was taken in this paper. The risk of missing a task is defined as the probability that the technician assigned to the task arrives at the customer site later than the time window. The problem studied in this paper is to generate a schedule that minimises the maximum of risks and sum of risks over all the tasks considering the effect of skill levels and task priorities. The stochastic duration of each task is supposed to follow a known normal distribution. However, the distribution of the start time of the service at a customer site will not be normally distributed due to time window constraints. A method is proposed and tested to approximate the start time distribution as normal. Moreover, a linear model can be obtained assuming identical variance of task durations. Additionally Simulated Annealing method was applied to solve the problem. Results of this work have been applied to an industrial case of SVRP where field engineering individuals drive to customer sites to provide time-constrained services. This original approach gives a robust schedule and allows organisations to pay more attention to increasing customer satisfaction and become more competitive in the market

    Revisiting old combinatorial beasts in the quantum age: quantum annealing versus maximal matching

    Get PDF
    This paper experimentally investigates the behavior of analog quantum computers such as commercialized by D-Wave when confronted to instances of the maximum cardinality matching problem specifically designed to be hard to solve by means of simulated annealing. We benchmark a D-Wave "Washington" (2X) with 1098 operational qubits on various sizes of such instances and observe that for all but the most trivially small of these it fails to obtain an optimal solution. Thus, our results suggests that quantum annealing, at least as implemented in a D-Wave device, falls in the same pitfalls as simulated annealing and therefore suggest that there exist polynomial-time problems that such a machine cannot solve efficiently to optimality

    A Methodology for Remote Microwave Sterilization Applicable to the Coronavirus and Other Pathogens using Retrodirective Antenna Arrays

    Get PDF
    This paper describes an innovative remote surface sterilization approach that could be applicable to the new coronavirus. The process is based on the application of a liquid film on the surface or object under sterilization (OUS). A beacon signal is required to self-steer the transmitted power from the designed retrodirective antenna array (RDA) towards the OUS; once the liquid film reaches the required temperature, the sterilization can be considered complete. Results suggest that the process takes 5 minutes or less for an angular coverage range over 60 whilst abiding by the relevant safety protocols. This paper also models the power incident onto the OUS and results are consistent with full-wave simulations. A practical RDA system is developed operating at 2.5 GHz and tested through the positioning of a representative target aperture surface. Measurements, developed by sampling the power transmitted by the heterodyne RDA, are reported for various distances and angles, operating in the near-field of the system. To further validate the methodology, an additional experiment investigating virus deactivation through microwave heating was also reported using live Coronavirus (strain 229E). Possible applications of the method include the sterilization of ambulances, medical equipment, and internet of things (IoT) devices

    Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei

    Get PDF
    The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively
    corecore